Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Dyslexia Friendly Font

Increase Cursor Size

Joseph Beatty, Ph.D.


Research Interests
Our lab uses a combination of neuroanatomical, neurophysiological and neuropharmacological techniques to investigate three overlapping areas of interest: neurological effects of Fragile X Syndrome, regulation and modulation of neuronal excitability of thalamocortical circuits and interactions between basal ganglia and thalamic circuits.

Fragile X Syndrome is the most common inherited form of mental retardation in humans and results from the loss of fragile X mental retardation 1 (FMR1) gene expression.  Our lab uses transgenic mice with the same genetic loss to study the neurological effects produced in neocortical neurons and neocortical circuits.  These experiments use electrophysiological recordings, neuroanatomical techniques, molecular assays and behavioral analysis to address several questions regarding the neurological effects of Fragile X Syndrome.

The thalamus and neocortex alone are complex nuclei within the brain.  They also form an important reciprocally connected network involved in sensory processing, arousal, attention and certain pathophysiological conditions such as epilepsy.  We study sensory integration at the single neuron level as well as at the network level.  Many of these experiments involve electrophysiological analysis of neocortical and thalamic neurons, but also may combine other techniques such as: two-photon microscopy, calcium imaging, and/or glutamate uncaging.

Another interest of the lab includes studying the circuitry and neurons of the intralaminar thalamic nuclei and their connections with basal ganglia nuclei, with the goal of understanding the functional circuitry of these structures at the cellular level, and their dysfunction in diseases, especially Parkinson’s disease.  To investigate these issues our lab use electrophysiological recordings of intact circuits, neuroanatomical techniques and neuropharmacological analysis of neurons in both the intralaminar thalamic nuclei and nuclei of the basal ganglia.
 

Selected Publications

Song SC, Beatty JA, Wilson CJ. (2016) The ionic mechanism of membrane potential oscillations and membrane resonance in striatal LTS interneurons. Journal of Neurophysiology. 116:1752-1764.

Beatty JA, Song SC, Wilson CJ. (2015) Cell-type Specific Resonances Shape the Responses of Striatal Neurons to Synaptic Input. Journal of Neurophysiology. 113:688-700.

Beatty, J.A., Sullivan, M.A., Morikawa,H. and Wilson, C.J. (2012) Complex autonomous firing patterns of striatal low-threshold spike interneurons. Journal of Neurophysiology. 108:771-781.

Beatty, J.A., Sylwestrak, E.L. and Cox, C.L. (2009) Intrinsic properties and muscarinic responsiveness of distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus. Neuroscience. 162:155-173.

Main Office
Department of Physiology
 Biomedical Physical Sciences (BPS) Building
567 Wilson Rd Rm 2201
Main Phone: 517-884-5000


Department Chairperson

Dr. Charles "Lee" Cox
Dr. Charles "Lee" Cox
BPS Building Rm 2201E
Phone: 517-884-5050
 coxclee@msu.edu

MSU Research Integrity Officer
Wills House
287 Delta Court, Room 106
Phone: 517-432-6698
 rio@msu.edu
Research Integrity Office