Toggle Accessibility Tools

Patrick Dillon, Ph.D.

Areas of Research Interest

Research Interests
The research in my laboratory focuses on the physical properties of molecules that bind as complementary pairs, and the physiological consequences of that binding. We use a wide range of different techniques to analyze complementary interactions, including capillary electrophoresis, muscle mechanics, enzyme kinetics, nuclear magnetic resonance and differential UV spectroscopy. Our analytical techniques also extend to theoretical calculations using diffusion models and catastrophe theory, used to assess state changes in biological systems. Our results have included defining new pathways of muscle energy utilization; a novel method for measuring dissociation constants; a highly sensitive method for measuring tissue metabolites using nanoliters of extract; quantitation of a wide range of molecular pair interactions; demonstration that membrane electric field dissociation of complementary complexes is molecular size dependent; measurement of the ascorbate dependence of catecholamine activity, including the underlying mechanism for the cardiovascular consequences of sympathomimetics such as ephedrine; and developing patents for new treatments for circulatory shock. We will continue applying present and future biophysical techniques to further our understanding of complex, molecular relationships in physiological systems.

Selected Publications

Barger J.P. and P.F. Dillon. (2016) Near-membrane electric field calcium ion dehydration. Cell Calcium. 60: 415-422.

Root-Bernstein R., Dillon P.F. A common molecular motif characterizes extracellular allosteric enhancers of GPCR aminergic receptors and suggests enhancer mechanism of action. Curr Med Chem. 2014, 21:3673-3686.

Root-Bernstein R., Podufaly A., Dillon P.F.  Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro.  Front Endocrinol. 2014, 5:118.

Dillon P.F. Equilibrium enzymes in regulatory systems: a problem in scalar-vector transition. Hypertension. 2014, 63:27-8.

Patrick F. Dillon.  Equilibrium Enzymes in Regulatory Systems: A Problem in Scalar-Vector Transition.  Hypertension.  63:27-28, 2014; originally published online October 14, 2013.

P.F. Dillon, R.S. Root-Bernstein, P.R. Sears, and L.K. Olson. Natural Electrophoresis of Norepinephrine and Ascorbic Acid. Biophysical Journal 79:370-376, 2000

P.F. Dillon. Influence of Cellular Energy Metabolism on Contractions of Porcine Carotid Artery Smooth Muscle. Journal of Vascular Research 37: 532-539, 2000

P.F. Dillon. Physiological Restrictions in the Regulation of Smooth Muscle Contraction. J. Physiol. (London), 537: 329, 2001

P.F. Dillon, R. S. Root-Bernstein and C. M. Lieder. Anti-Oxidant Independent Ascorbate Enhancement of Catecholamine-Induced Contractions of Vascular Smooth Muscle. AJP Heart and Circulatory 286: H2353-H2360, 2004


Main Office

Department of Physiology
 Biomedical Physical Sciences (BPS) Building
567 Wilson Rd Rm 2201

Main Phone: 517-884-5000
Office Fax: 517-432-1967

Department Chair

C. Lee Cox
Dr. C. Lee Cox

BPS Building Rm 2201E

Phone: 517-884-5050
Fax: 517-432-1967

Graduate Office

Department of Physiology
BPS Building Rm 2205

Phone: 517-884-5075
Fax: 517-432-1967